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Abstract

The case for designing optimal strategies for robot locomotion has increased in significance over the past decade
with the increasingly large number of unmanned mobile bots being utilized in covert operations. Furthermore, such
mobile sensory nodes can be of paramount importance in conducting surveillance and rescue operations for
post-disaster recovery teams. The key issue here is to design locomotion and path-planning strategies for bots
such that they can operate even in regions with limited or intermittent network connectivity. In this paper, we adapt
a variant of the much popular chemotaxic movement algorithm as prevalent amongst bacteria of most strains.
Using such a movement strategy the bacteria gradually move towards their location, in search of food, following
a chemical gradient. Suboptimal paths are periodically rejected using a process referred to as "tumbling". Using
such stochastic techniques, even simplistic creatures like the bacteria reach optimal resources with little
inter-communication. This paper analyses and demonstrates such a chemotaxic strategy and explains its analogical
relevance in the context of target finding in miniaturized mobile sensory nodes. The paper also throws light on
how future resource-aware variants of similar algorithms can be utilized to further optimize path planning strategies
for such miniaturized ant-like bots.

I. INTRODUCTION

The idea of devising novel path planning
strategies for mobile robots in homogenous
environments and the so called "toy domains" is not
unknown to us. The very idea of automating, reducing
or in the least augmenting human effort through a
sequence of robot-assisted tasks has been in practice
for several decades now. However, the notion of
exploiting the distributed knowledge base or the
collective intelligence of robots to perform complex
analytical tasks is relatively new. It has been
increasingly observed over the past decade or so that
swarm or herd behaviour in mobile robots can be
exploited effectively to achieve high levels of optimality
in performing difficult tasks under sever resource
constraints. While swarm intelligence and the
consequent particle optimization [1][2] based effort
minimizing techniques are presently being utilized,
similar heuristics are emerging, which show an equally
promising , if not a more promising behaviour than the
existing ones.

Path planning in robots is an extensively
researched area with several architectures and models
already being used to optimize the planned trajectory
coverage and the planning time incurred. Most of these

decisions fall under two major categories namely the
centralized and the decentralized path planning control.
The centralized control strategy, also referred to as the
coupled control strategy[3], assumes the existence of
a centralized control broker which collaborates between
several mobile nodes and forwards control and status
information amongst them[4]. The decentralized or
decoupled control strategy works on a
delegation-control model, wherein the task is usually
delegated as a series of subtasks to the constituent
nodes which perform their actions independently or with
minimal dependence on any broker or each other[5][6].
Alternately, each node may try to solve the entire
problem space, and thereby generate sub-optimal
solutions in each iteration of its attempt. Gradually, a
"decently" optimal or acceptable solution emerges as a
result of this type of collaborative behaviour. It is but
obvious that the decentralized technique is essentially
faster than the centralized one and bypasses the
dependence on a system broker, which in time-critical
applications can prove to be a resource bottleneck. On
the other hand, conflict resolution [7] can be a major
issue in decentralized systems, when the goal
conditions of one are in direct opposition with the goal
conditions of another node operating in the same
environment and under same resource constraints.
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Such issues maybe effectively tackled using a
prioritization schema[8][9] wherein each goal seeking
scenario is prioritized keeping other competing
scenarios in mind , and subsequently all other moving
robots are treated as obstacles when compared to the
primary robot in focus [10]. Furthermore, any hard
quality of service (QoS) guarantees in terms of solution
space traversed, time entailed in doing so and the
number of dead ends reached is almost always
impossible to provide in a decentralized scenario.

It is a logical implication of the centralized control
technique that the controller can view the group of
robots as a single composite entity and administer a
global or universal path planning algorithm on that. In
fact, most of the earliest known examples of path
planning strategies are instances of this type [11][12].
A fair amount of literature also exists on methods to
effectively combine the two approaches leading to
increased QoS guarantees, better collision resolution
and most importantly more scalable architectures
extendible to multiple application domains. The design
and construction aspects of such swarm bots are also
areas of active research and interest and a fair share
of literature exists for that as well[13][14][15][16].

Modern day path planning applications dwell
considerably upon classical path planning algorithms
making use of a number of techniques. A common
method includes the use of the Laplace equation to
constrain the generation of a potential function over the
configuration space of end effectors. Yet another
important work in this regard was done by Khatib [17]
who introduced the idea of potential field method of
path planning, which posited the existence of obstacles
which exerted a repulsive force on the end effectors of
the robot and the existence of targets or goals which
exerted an attractive force on the targets. This paper
offers a refreshing take on this issue of path planning
and proposes a chemotaxis based locomotion strategy,
a soft computing paradigm inspired from the movement
of bacteria. While, the fundamental ideas of obstacles
and goals are well preserved in our proposed concept,
greater attention is paid towards operation under
extremely constrained resources and fast goal seeking.
The section 2 explains the idea of bacterial chemotaxis
as observed in nature. Section 3 demonstrates the
intital results achieved using our lab simulations of
chemotaxic movements. Section 4 analyses the
implications of the simulation results followed by section

5 which proposes a pathway for future work in this
area.

II. CHEMOTAXIS IN BACTERIA

The term taxis refers to the migratory response
of any cell to its environment. A cell responds such
that it changes both its direction and the duration of
the next movement step. Any tactic response on part
of the cell requires some directional information from
the environment that the cell may obtain by comparing
any particular environmental property at multiple
instances of time, i.e. the temporal gradient. If the tactic
response is related to information about chemical
concentrations (either attractants or repellents), it is
called chemotaxis.

The phenomenon of chemotaxis is best noted
amongst bacteria strain E. coli, one of the most
intensely studied bacterial colonies in research. The
sensory network of E. coli governs the locomotion of
the bacteria towards chemical attractants and away
from chemical repellents by observing temporal
changes in the chemical gradient of the medium. This
is achieved by the bacteria by controlling the frequency
of abrupt directional changes using a phenomenon
called "tumbling". A distinguishing feature of chemotaxis
is that a change in the concentration of a chemical
stimulant induces a rapid change in the bacteria’s
tumbling frequency, which gradually adapts back
precisely to its pre-stimulus value after a certain
temporal window [18][19]

As said, most bacterial strains bias their
swimming motion towards a specific chemical and away
from certain others [20]. Bacterial motion clearly
resembles a random walk problem, Markov or
otherwise, wherein each swimming trajectory of the
bacteria is governed by a succession of random steps,
each of finite duration. It would be fair to term bacterial
chemotaxis as a special case of random walk or better
still as a biased random walk problem, with the walk
being biased by the presence of a chemical gradient.
Chemotaxis in this case is achieved by modulation of
the tumbling frequency. When moving in the direction
of an increasing attractant concentration, the bacteria
encounter a positive gradient that increases with time.
In response, they tumble less frequently and thus tend
to continue to move up the gradient. This process is
mediated by a protein network which is also well
studied in bio-chemistry domains [20][21]. We present
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a model that is based on the above chemotaxis model
on how distributed nodes resembling the E. coli
bacteria can work in a perfectly decoupled environment
and reach the food locations, which are the target
locations in case of our sensory nodes, in a near
optimal time. The chemotaxic algorithm we resort to in
this paper is a biologically inspired optimization method
inspired by Bremermann et al [22] [23] [24]. Berg and
Brown [25] performed on of the first studies of
chemotaxis towards amino acids of the bacterium E.
coli. The analysis provides valuable insights and the
necessary experimental parameters which we utilize in
our model.

III. EXPERIMENTAL RESULTS

The idea of the initial phase of this project was
to test our initial hypothesis that even in a perfectly
decentralized environment with sever resource
constraints, the mobile nodes or bots which are
modeled as bacteria can reach their targets in a finite
time with fewer nodes straying off the trajectory. The
key concern here is to ensure two design goals viz.

(i) Majority of the mobile nodes reach to within a
radius ‘r’ of the target location within time ‘t’,
where the key objective function must minimize
both ‘r’ and ‘t’.

(ii) The distance of the remaining nodes from the
desired target must also gracefully decrease with
increase in the value of ‘t’.

We ran four sets of simulation experiments
designed using MATLAB 7.10 (2010a) running on a
Dell x86 based system having a dual core 2.8 GHz
processor, 3GB of primary memory and 320GB of
secondary memory. The four classes of simulation were
modeled as follows:

Case 1: Simulating a perfect random walk problem
(without food) and observing the result after 10
time-steps.

Case 2: Simulating a perfect random walk problem
(without food) and observing the result after 200
time-steps.

Case 3: Simulating a “biased” random walk problem
(chemotaxic, with chemical gradient) and observing the
result after 10 time-steps.

Case 4: Simulating a “biased” random walk problem
(chemotaxic, with chemical gradient) and observing the
result after 200 time-steps.

The results of the four sets were then compared
and the initial hypothesis tested for validity. The various
experimental settings for the simulation were as follows:

(a) The number of bacteria selected for migration
was 100 at any instant of time.

(b) The value of a single time step was 1 second.

(c) The bacterial velocity is set at 0.2 cm/sec. (The
experimental results show very little standard
error when this value is increased or decreased
i.e. the sensitivity of our final assumption is very
low with respect to velocity of the cells)

(d) Three concentration thresholds of HIGH,
MEDIUM, and LOW had been set to govern the
tumbling frequency with values as 0.9, 0.7 and
0.5 respectively.

The simulation results for the first case are shown
in Figure 3.1. The distance measure in X-axis is in
units of cm (distance is relative in scale to screen size
of the simulation). The Y-axis is the number of nodes
per unit area and is normalized with respect to the
largest Y value for the given scenario. This figure
shows the state of the simulation prior to introduction
of a chemical gradient after a series of 10 time steps.
The Figure 3.2 shows the state of the same simulation
environment after a series of 200 time steps, where
the inherent assumption is that no environmental
parameters have been changed in the intervening
period. The target in all our four simulation examples
is assumed to be present at co-ordinate (0,0) and it is
the objective of all the fitness functions to minimize the
distance of the nodes i.e. the radium ‘r’ from (0,0) in
the shortest possible time ‘t’.

Fig. 3.1 Pre-chemotaxic location chart after time
step 10.

Fig. 3.2 Pre-chemotaxic location chart after time
step 200.

As is expected from our hypothesis, we do
observe that there is no noticeable change in the way
the bacteria behave even after a difference of 180 time
steps when no external gradient is provided. Thus, for
a perfectly decentralized yet non-chemotaxic
environment, no conclusions on time-dependency and
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effectiveness of the algorithm can be arrived at based
on our model design. Moreover, it is interesting to

observe that almost none of the nodes actually did
make it to the target even though few have reached
substantially close to it. This brings out beautifully the
problems arising with constrained resource problems
which the sensory nodes are bound to face in a
heterogeneous environment.

Next we run our second round of simulations, this
time with a chemical gradient albeit a positive one in
place, along with a stable policy deciding the exact
tumbling threshold values, as discussed in earlier
paragraphs. Once again an inherent assumptions
regarding the location of the target as (0,0) and the
permanence of the environmental parameters in
between the time steps of the simulation is adhered
to.

Figure 3.3 below demonstrates the location chart
in the presence of a chemical gradient after 10 time
steps while Figure 3.4 shows the location chart after
200 time steps, as in the previous simulations.

Fig. 3.3 Post-chemotaxic location chart after time
step 10.

Fig. 3.4 Post-chemotaxic location chart after time
step 200.

The above simulation results depict the location
of the nodes in presence of the chemical gradient. The
plot in Fig.3.4 confirms our hypothesis that chemical
gradient indeed plays a vital role in locomotion i.e. in
presence of chemotaxis, nodes are likely to reach their

targets much more quickly.

IV. ANALYSIS OF SIMULATION RESULTS

It is but evident that our initial hypothesis stands
true in the light of the initial stage simulation results
as shown in Figure 3.1 – 3.4. We have conclusively
proven that in presence of a positive chemical gradient
or an attractant, the acceleration of the mobile nodes
towards the target location gracefully increases with the
reverse happening in case of a chemical repellent. Now
let us turn our focus to our key design goals and see
whether they have also been met or not.

Our first design goal from Section was to
minimize the radius ‘r’ and the time ‘t’ taken by the
nodes to reach within ‘r’. Judging by the simulation
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results shown in Fig. 3.4, we can safely conclude that
within a time t = 20 seconds (each time step being of
1 second duration), the nodes managed to reach within
a radius of less than 0.15 cm which is impressive when
compared relative to the distance scale shown in the
plots. The second design goal posited that the distance
of the remaining nodes from the target must also
decrease gracefully with increasing time. This design
goal is also clearly fulfilled as is made clear from the
decreasing slope of the plot in Fig. 3.4. It is also
evident from the simulation result that after a certain
radius threshold of around 0.5 cm, no node will cease
to exist after ’t’ time steps.

The implications and extensions to the
chemotaxic theory that we can derive from the above
conducted 2-D simulation are paramount. We observe
that with increasing time ‘t’, in a chemotaxic
environment, the mean distance between the cells or
nodes decrease as they tend to cluster around the
target. In a resource constrained environment, this
would further tend to increase competition for the
already scarce resources, say bandwidth in once case.
This posits the need for density-adaptive
communication network setups wherein the mobile
nodes as well as the intermediate network access
points are power-aware and resort to hop-by-hop
energy-aware routing mechanisms. Yet another
conclusion of the above simulations is that, pure
random walk based designs would lead to tremendous
wastage of resources. Consider the location charts in
Fig. 3.1 and Fig. 3.2 where the average distance of all
the nodes from the target is well over 0.3 cm and
would remain in the vicinity of that value for further
time-steps. The bandwidth, used by these nodes,
amongst other resources like power etc is essentially
wasted and the network congestion caused by these
mobile nodes due the inter-communicating packets
would further jeopardize the resource utilization of the
winning nodes nearer to the target. This is based on
the assumption that all the nodes share the same
intermediary public transmission network.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have designed and
demonstrated a path planning algorithm based on the
chemotaxic movement of E. coli bacteria. We have
successfully defended our hypothesis which argues the
benefits of using a biased random-walk based
architecture for perfectly decentralized nodes in a

heterogeneous environment versus a pure-random walk
scenario. The implications of using our model in a
resource starved heterogeneous environment as one
might expect in a typical surveillance or rescue
operation is also well brought out in the post-simulation
discussion.

In the following phases of this ongoing project we
plan to deploy this locomotion strategy on low-power
wireless sensor nodes (WSNs) and compare the
performance of the same in a physical scenario. We
are also in the process of analyzing the simulation
results to find out the fitness of the model to various
QoS parameters, by running t-tests and f-tests on the
several different QoS hypothesis. A comparison chart
with existing swarm bot path planners is also in the
making at the time of writing this paper.
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